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Abstract: Structural reliability problems involving the use of advanced finite-element models of real-world structures are usually defined
by limit-states expressed as functions (referred to as limit-state functions) of basic random variables used to characterize the pertinent
sources of uncertainty. These limit-state functions define hyper-surfaces (referred to as limit-state surfaces) in the high-dimensional spaces
of the basic random variables. The hyper-surface topology is of paramount interest, particularly in the failure domain regions with highest
probability density. In fact, classical asymptotic reliability methods, such as the first- and second-order reliability method (FORM and
SORM), are based on geometric approximations of the limit-state surfaces near the so-called design point(s) (DP). This paper presents a
new efficient tool, the multidimensional visualization in the principal planes (MVPP) method, to study the topology of high-dimensional
nonlinear limit-state surfaces (LSSs) near their DPs. The MVPP method allows the visualization, in particularly meaningful two-
dimensional subspaces denoted as principal planes, of actual high-dimensional nonlinear limit-state surfaces that arise in both time-
invariant and time-variant (mean out-crossing rate computation) structural reliability problems. The MVPP method provides, at a
computational cost comparable with SORM, valuable insight into the suitability of FORM/SORM approximations of the failure prob-
ability for various reliability problems. Several application examples are presented to illustrate the developed M VPP methodology and the

value of the information provided by visualization of the LSS.
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Introduction

The field of structural reliability analysis has seen significant ad-
vances in the last two decades (Ditlevsen and Madsen 1996;
Schueller et al. 2004). Analytical and numerical methodologies
have been developed for the probabilistic analysis of real struc-
tures characterized by nonlinear behavior and material/geometric
uncertainties, and subjected to stochastic loading. Reliability
analysis methods have been successfully applied to problems en-
countered in civil engineering, which in the deterministic realm
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are typically analyzed through the finite-element (FE) method
(Der Kiureghian and Ke 1988).

In general, a structural reliability problem requires computing
a probability of failure, Py, corresponding to some limit-state (or
damage-state) function(s) (LSFs) when the loading(s) and/or
structural properties and/or parameters in the LSFs are uncertain
quantities modeled as random variables. These LSFs define a fail-
ure domain (LSF<0), a safe domain (LSF>0), and a limit-state
surface (LSS) (LSF=0). Thus, P, is the probability content of the
failure domain (Ditlevsen and Madsen 1996). Among the reliabil-
ity analysis methods available, asymptotic (semi-analytical) meth-
ods [first- and second-order reliability methods (FORM and
SORM)] (Breitung 1984; Der Kiureghian et al. 1987) and some
sampling techniques (Melchers 1989; Au et al. 1999; Au and
Beck 2001b) are characterized by the crucial step of finding the
design points (DPs), defined as the most likely failure points in
the standard normal space. Asymptotic methods can provide reli-
ability analysis results with a relatively small number of LSF
evaluations (often of the order of 10~100 for FORM analysis,
corresponding to the number of iterations required to find the DP)
and with a computational effort only weakly dependent on the
magnitude of the failure probability. It is noteworthy that, while
the number of LSF evaluations is practically independent of the
number of random variables, the computational cost of each itera-
tion in the DP search increases with the number of random vari-
ables. Furthermore, these methods provide important information
(e.g., reliability sensitivity measures) as a by-product of the DP
search (Hohenbichler and Rackwitz 1986). On the other hand,
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convergence of the DP search iterative process can be numerically
very challenging, and the nonlinearities in the LSS can cause
inaccuracies in the FORM/SORM failure probability estimates.
Other reliability analysis methods, e.g., subset simulation (Au and
Beck 2001a, 2003) and importance sampling with sampling dis-
tribution not centered at the DP(s) (Bucher 1988; Ang et al.
1992), do not use the concept of DP. In general, the computational
cost of these methods increases for decreasing failure probability.
Thus, for reliability problems with very low failure probabilities
(ie., 1073 ~1077 typical of civil structures), these methods could
require a prohibitively large number of simulations.

The geometric properties of LSSs encountered in FE reliability
analysis problems are of great research interest. FORM/SORM
analyses are based on geometric approximations of the LSS at the
DP (Der Kiureghian 2000). Importance sampling methods can be
extremely efficient when information about the LSS geometry is
used (Au and Beck 2001b). Knowledge of the LSS topology for a
given FE reliability analysis problem is particularly valuable in:
(1) gaining physical and geometrical insight into the structural
reliability problem at hand (e.g., singly versus multiply connected
failure domain); (2) understanding the reasons behind potential
difficulties encountered in the DP search (e.g., nonsmoothness of
the LSS); (3) developing more robust and more efficient DP
search algorithms exploiting the physical and geometrical insight
gained; (4) identifying the sources of inaccuracy of the FORM/
SORM approximations for time-invariant and time-variant (mean
out-crossing rate computation) FE reliability analysis problems
(Barbato 2007); and (5) pointing to new more efficient and more
accurate computational methods for evaluating the probability
content of failure domains typically encountered in FE structural
reliability analysis.

Nevertheless, only scarce research has been devoted to gain
insight into the geometric properties of nonlinear LSSs typically
arising in FE reliability analysis of nonlinear structural models
subjected to random loading (Der Kiureghian 2000). This is likely
due to the fact that the study of the topology of LSSs is a chal-
lenging task involving visualization of nonlinear hypersurfaces in
high-dimensional spaces (i.e., physical space or standard normal
space defined by numerous random variables related to loading,
geometric and material parameters). Indeed, only limited tools
(Haukaas and Der Kiureghian 2004) are available to visualize, in
nonspecialized two- or three-dimensional subspaces of high-
dimensional spaces, LSFs and LSSs corresponding to FE reliabil-
ity analysis problems. These non-specialized subspaces are
defined by sets of two or three arbitrary axes of the standard
normal space in which the reliability problem is cast. In this
study, a new method is developed for the visualization, in the
neighborhood of the DP, of LSSs in high-dimensional spaces for
both time-invariant and time-variant FE structural reliability
analysis. This new approach is referred to herein as the multidi-
mensional visualization in the principal planes (MVPP) method.
The MVPP method provides extremely valuable information on
the geometric properties of the actual LSSs and how they affect
the accuracy of the estimated failure probability for FE structural
reliability problems in high-dimensional spaces of random vari-
ables. This geometric information is obtained at a limited compu-
tational cost, which is only weakly dependent on the number of
random variables. To the writers’ knowledge, the MVPP method
provides a first and unique practical visualization tool to extract
crucial topological information on nonlinear high-dimensional
LSSs in FE structural reliability analysis. Thus, the MVPP results
about the actual geometry of the LSSs are significantly different
from other qualitative (conceptual) depictions of LSSs, which

have been commonly used for descriptive purposes in the litera-
ture on structural reliability analysis (Schueller 2008).

MVPP Method

This paper presents the MVPP method to study the geometry of
LSSs near their DPs in spaces with more than three dimensions in
the context of structural reliability analysis. This method is espe-
cially useful for high-dimensional spaces, such as the ones de-
fined by the large number of random variables typically
encountered in FE reliability analysis. The basic idea behind the
MVPP method is to visualize the LSS in the neighborhood of the
DPs in two-dimensional subspaces (i.e., planes) of particular in-
terest. These planes are referred to as the principal planes (PPs)
and are defined as the planes of principal curvatures of the LSS at
the DPs. The MVPP consists in finding the traces of the LSS in
the PPs (i.e., the intersection curves between the LSS and the
PPs), with the PPs ordered in decreasing magnitude of the LSS
principal curvatures at the DP(s). In the case of an LSS with
multiple DPs, the MVPP method can be applied repeatedly to
visualize the LSS in the neighborhood of each DP. The MVPP
method has been implemented and tested in two different compu-
tational frameworks, namely OpenSees (Mazzoni et al. 2007) and
FedeasLab-FERUM (Haukaas 2001; Filippou and Constantinides
2004).

The MVPP method encompasses the following major steps:
(1) search of the DPs; (2) determination of the PPs of interest; and
(3) computation and visualization of the traces of the LSS in these
PPs. Next, the three stages of the methodology are described in
detail for time-invariant component reliability analysis. Then, the
MVPP method is extended to time-variant component reliability
problems. In the sequel, the boldface and lightface represent a
vector/matrix and scalar value, respectively.

Step 1: Design Point Search

A component reliability analysis problem is defined by a single
LSF g=g(r,0), where r=vector of response quantities of interest
and @=vector of basic random variables. The LSF g is chosen
such that g =0 defines the failure domain/region. Thus, the time-
invariant component reliability problem can be expressed math-
ematically as (Ditlevsen and Madsen 1996)

Pp=Plg(r,0) = O]ZJ fo(0)d0 (1)
g(r,0)=0

where f(0)=joint probability density function (PDF) of all basic
random variables 0.

A well-established methodology to solve the problem in Eq.
(1) consists of converting it from the space of original/physical
random variables 0 to the space of standard normal uncorrelated
random variables y (referred to as the standard normal space). It
can be shown that, provided the joint cumulative distribution
function of random variables 0 is continuous and monotonically
increasing as a function of each random variable, a one-to-one
mapping between the physical space and the standard normal
space can be found (Ditlevsen and Madsen 1996). With this
change of variables, Eq. (1) is recast as
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Ps=P[G(y) =0]= f dy(y)dy )
G(y)=0

where ¢y(y)=standard normal joint PDF and G(y)=LSF in the
standard normal space. Solving the integral in Eq. (2) remains a
formidable task, but this new form of P; is suitable for approxi-
mate solutions taking advantage of the rotational symmetry of the
standard normal joint PDF and its exponential decay in both the
radial and tangential directions. An optimum point at which to
approximate the LSS and evaluate the integral in Eq. (2) is the
DP, which is defined as the point on the LSS nearest to the origin.
The DP, y*, is found as solution of a nonlinear constrained opti-
mization problem (Liu and Der Kiureghian 1991). The most ef-
fective techniques for finding the DP are gradient-based
optimization algorithms (Gill et al. 1981; Liu and Der Kiureghian
1991) coupled with algorithms for accurate and efficient compu-
tation of the gradient, V,G, of the constraint function G(y) with
respect to the standard normal variables y. Using the chain rule of
differentiation for multivariable functions and recognizing that g
=g(r(0),0), V,G is computed as

VyG = (Vrg|0 : Vﬂr + V(')g|r) . Vy0 (3)

where V,g|o and Vyg|,=gradients of LSF g with respect to its
explicit dependency on quantities » and 6, respectively, which
usually can be computed analytically; Vgr=sensitivities of re-
sponse variables r to parameters 0, V,0=gradient of the physical
space parameters with respect to the standard normal space pa-
rameters (i.e., Jacobian matrix of the probability transformation
from the y-space to the @-space), and the operator |, indicates
that the quantity to which it is attached is computed keeping
constant the value of the variable x. For probability distribution
models defined analytically, the gradient V,0 can be derived ana-
lytically as well (Ditlevsen and Madsen 1996). For real-world
problems, response simulation (computation of r for given 0) is
usually performed using advanced, high-fidelity, mechanics-based
nonlinear computational models based on the FE method. FE re-
liability analysis requires augmenting existing FE formulations
for response-only calculation to compute the response sensitivi-
ties to parameters 0, Vgr. An accurate and efficient method for FE
response sensitivity analysis is the direct differentiation method
(DDM) (Zhang and Der Kiureghian 1993; Kleiber et al. 1997;
Conte et al. 2003, 2004; Haukaas and Der Kiureghian 2004; Bar-
bato and Conte 2005, 2006; Zona et al. 2005, 2006; Barbato et al.
2007; Gu et al. 2009a,b).

The DP search, for FE reliability analysis involving large-scale
nonlinear models of real-world structural systems, is itself a chal-
lenging task. Herein, the nonlinear optimization code SNOPT
(Gill et al. 2002) is employed for the DP search (Gu 2008) in
conjunction with DDM-based response sensitivities for evaluating
the LSF gradient [Eq. (3)].

Step 2: Determination of the PPs of Interest

After finding the DP, a new reference system in the standard
normal space is defined so that the nth axis (with n=number
of random variables) is oriented in the direction defined by the
DP vector y* and the new origin coincides with the DP. A
generic vector y’ in the new reference system is obtained as
y'=R-(y—y*) where the rotation matrix R is defined such that
R-y*=[0 --- 0 B]", in which B=distance of the DP from the
origin (i.e., FORM reliability index). The rotation matrix R can be
determined using any suitable QR decomposition algorithm, e.g.,

classical and modified Gram-Schmidt orthonormalization (Stoer
and Bulirsch 2002). Notice that R is uniquely defined when the
employed QR algorithm is specified.

Each PP is defined by the DP vector y* (nth axis of the trans-
formed reference system) and one of the eigenvectors (referred to
as principal directions) of the (normalized and reduced) Hessian
matrix A defined as (Breitung 1984)

H red

A=——rd
||VyG|y:y*||

4)
in which H,4=(n-1) X (n—1) reduced Hessian computed at the
DP in the transformed reference system, obtained by deleting the
nth column and nth row from the (n X n) Hessian matrix of the
LSF at the DP in the transformed reference system, i.e., R-H-RT,
where H=(nXn) Hessian matrix of the LSF at the DP in the
standard normal space, |[V,G |,-,+{|=Euclidean norm of the gradi-
ent of the LSF at the DP in the standard normal space, and the
operator *|,_g indicates that the quantity to which it is attached is
evaluated at x=x. Herein, the LSF is assumed to be twice differ-
entiable in the neighborhood of the DP, thus ensuring existence of
the Hessian matrix at the DP. A sufficient condition for this as-
sumption to be satisfied is that, when using only uniaxial material
models, all material constitutive models are continuously differ-
entiable with respect to the material parameters, the loading func-
tion is continuous in time and continuously differentiable with
respect to the loading parameters modeled as random variables,
and (for reliability problems based on dynamic FE analysis) the
time step used to integrate the equations of motion of the system
is sufficiently small (Barbato and Conte 2006). The principal di-
rections are sorted in decreasing order of magnitude (absolute
value) of the corresponding eigenvalues which represent the prin-
cipal curvatures. Only a limited number of principal directions are
computed (using any algorithm for finding the eigenvalues/
eigenvectors of a real-valued symmetric square matrix), thus de-
fining a limited number of PPs in which the topological properties
of the LSS are of interest. The number of principal directions of
interest can be defined by setting a lower limit |Bk/|;, to the
adimensional (normalized) quantity |Bk;|, where k;=ith principal
eigenvalue (i=1,...,n—1), below which visualization in the cor-
responding PP is not needed since the trace of the LSS in this PP
is almost linear in the neighborhood of the DP.

In this study, the Hessian matrix H in the standard normal
space [see Eq. (4)] is obtained by forward finite difference calcu-
lations applied to the DDM-based FE response sensitivities. The
finite difference calculations can be performed either: (1) in the
physical space to obtain the Hessian matrix Hy which is then
transformed to the Hessian matrix H in the standard normal
space, or (2) in the standard normal space to obtain directly H. It
was observed that the second procedure is less prone to numerical
difficulties and inaccuracies and is adopted herein. After selecting
a perturbation value, Ay, for the standard normal random vari-
ables (e.g., Ay=1073~1079), the ith row of the Hessian matrix,
H,, is approximated as

1
H; = A_y[vyG|y=y*+Ay»ei - VyG|y=y*] 5)

in which e;=ith axis unit vector, i.e., a column vector with the ith
component equal to one and all other components equal to zero.
The row vector VyG|y=y*+Ay,el_ in the equation is obtained by: (1)
perturbing the DP vector in the standard normal space as y®)
=y*+Ay-e;; (2) mapping y* to the corresponding point 8 in the
physical space; (3) computing the gradient Vgg|g_( in the physi-
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cal space; and (4) transforming the obtained gradient back to
the standard normal space, i.e., VyG|y:y*+Ay,ei=V9g|9:9(i)-
Vy6 |y=y"‘+Ay-ei~

The DDM-based forward finite difference method defined
above is more efficient and accurate for computing the Hessian
matrix H than the second-order central finite difference method
applied directly to the LSF. Nevertheless, for detailed FE models
of realistic structural systems characterized by a large number of
uncertain model parameters, this approach for computing the Hes-
sian matrix could still be computationally prohibitive. To signifi-
cantly reduce the computational cost of the MVPP method, an
existing algorithm (Der Kiureghian and De Stefano 1991) can
also be used to obtain the principal directions in order of decreas-
ing magnitude of the corresponding eigenvalues without comput-
ing the entire Hessian matrix H.

Step 3: Visualization of Traces of LSS in PPs

Visualization of the traces of the LSS in the PPs of interest can be
obtained using two methods: (1) computing the values of the LSF
over a grid of points in the PP and obtaining the trace of the LSS
in this PP as zero level curve of the discretely sampled surface so
obtained, and (2) employing a standard zero-finding algorithm
(for scalar functions of a single variable) to obtain points of the
LSS trace as zero points of the LSF in the PP. These two methods
will be referred to hereafter as the zero level curve method
(ZLCM) and the zero-finding method (ZFM), respectively. In the
ZFM, the zero-finding is performed in the PP local coordinate
system with origin at the DP, x-axis defined by the corresponding
principal direction in this PP, and y-axis defined by the DP direc-
tion. For each selected point x, on the x-axis (p=1,2,... Mg
with n,,=user-defined number of points along the x-axis), the
value of the LSF G along the y-axis depends only on the value of
the coordinate y. A zero-finding algorithm is used to find the
value y, so that G(y,,):O. The starting point for the zero-finding
algorithm at each considered x, can be taken on the x-axis (i.e.,
y=0). The ZFM is usually much more efficient than the ZLCM if
a robust and efficient zero-finding algorithm (e.g., safeguarded
secant or Newton’s method, see Gill et al. 1981) is employed.

LSS visualization is performed only in the (usually small num-
ber of) PPs corresponding to the set of principal curvatures k;
satisfying the condition |Bk;|=|B«|,. For increasing order of the
PP (i.e., for decreasing absolute value of the corresponding prin-
cipal curvature), the LSS trace in the neighborhood of the DP
increasingly approaches a straight line coincident with the x-axis.
Therefore, the MVPP method provides important information on
the LSS topology near the DPs (e.g., nonlinearity, smoothness)
and on the geometry of the failure domain (e.g., global/local
shape, singly/multiply connected) by identifying a small number
of most important two-dimensional subspaces (i.e., PPs) and thus
by requiring only a limited number of FE simulations to visualize
the LSS.

Extension of MVPP to Time-Variant Reliability
Problems

In time-variant reliability problems, the objective is to compute
the time-variant failure probability, PAT), defined as the probabil-
ity of occurrence of at least one out-crossing event in the failure
domain over the time interval [0, T]. Classical approaches to solv-
ing time-variant reliability problems make use of estimates of the
mean down-crossing rate of level zero of the LSF g, v,(¢) (in
short, mean outcrossing rate: MOCR). In time-variant reliability

analysis, the LSF also depends on the time ¢ and can be ex-
pressed, in general, as g=g(r(0,7),0,1)=g(0,7) in the original/
physical space, or as G=G(y,?) in the standard normal space. The
mean out-crossing rate v,(¢) is given in limit form as (Hagen and
Tvedt 1991)

v(6) = lim P[(G;<0) N (G,=0)] ©)
310 ot

where G,=-G(y,t) and G,=G(y,t+dr). The numerator in the
right-hand side (r.h.s.) of Eq. (6) is the probability that the system
is in the safe domain at time ¢ and in the unsafe domain at time
t+8t, where 8r=small but finite interval of time. Thus, a numeri-
cal approximation of the MOCR can be obtained by taking a finite
dt (sufficiently small to preclude the possibility of more than one
out-crossing event in the time interval (¢,7+ 3t]), evaluating the
numerator in the r.h.s. of Eq. (6) and dividing it by &¢. The evalu-
ation of this numerator at a given instant of time ¢ corresponds to
solving a time-invariant parallel system reliability problem of two
components with LSFs G, and G,, respectively. Therefore, in the
case of time-variant reliability problems, interest is on the visual-
ization of the two LSSs G,=0 (at time ¢) and G,=0 (at time ¢
+931) and the domain between these two hyper-surfaces. Indeed,
the probability content of this domain is the numerator in the r.h.s.
of Eq. (6). In addition to visualizing the LSS G,=0 as in time-
invariant reliability analysis, the MVPP method for time-variant
reliability analysis requires the additional step of visualizing the
LSS G,=0. After evaluating G, at a given point in the considered
PP, the LSF G, at the same point can be computed at negligible
computational cost (without any additional FE response simula-
tion) as

G or
G,=G(y,t+dt) = G(y,1) + o St=2g(0,1)+V,gle- P St

(7)

In the ZLCM, the LSF G, is evaluated directly using Eq. (7) on
the same grid of points used for the LSF G,. In the ZFM, points
on the trace of the LSS G,=0 in the PP of interest are obtained
efficiently using information from the zero-finding iterations per-
formed to obtain the corresponding points on the trace of the LSS
G,=0. This information consists of the coordinates of the point(s)
where G, assumes the smallest positive and/or largest negative
value(s) and the value(s) of G, at this (these) point(s) for each
iteration sequence yielding a point on the trace of the LSS G,
=0.

Application Examples

First, the MVPP method is illustrated in a time-invariant compo-
nent reliability problem defined by an analytical LSF. Then, two
application examples of time-invariant and time-variant compo-
nent reliability analysis related to two different nonlinear FE
structural models are presented to demonstrate the capabilities of
the proposed method and its utility. In each of these three appli-
cation examples, the MVPP results are analyzed and used to gain
insight into the accuracy or lack thereof of FORM/SORM ap-
proximations to the failure probability.
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Fig. 1. Three-dimensional visualization of the analytical LSS in the
standard normal space

Time-Invariant Case: LSF Defined by an Analytical
Function

The first application example consists of a time-invariant compo-
nent reliability problem with an analytical LSF depending on
three statistically independent standard normal variables y; (i
=1,2,3). This simple case study is used here to clearly illustrate
the MVPP method step by step. The analytical LSF considered is
defined as

_
61 27 196 19
Gy)=—yi+—3+y) +—— —y3)— —
o) 20’1 16O(yz ¥3) <0 Yi(y2=y3) 20’23
21 41
-= — 8
20()’2+)’3)+40 (8)

Three-dimensional visualization of the LSS G(y)=0 is given in
Fig. 1. The DP is located at y*=[0 0.5 0.5]" and the FORM
reliability index assumes the value B=v2/2. The rotation matrix
R is obtained via Gram-Schmidt orthonormalization and the LSF
in the transformed reference system is given by

-
61 23 1 19v3 =
G ;=_12+_/2+_/2__//_5121 9
0)=gg0 t g2 tog¥3 40 Y2 Vs )
The norm of the gradient vector at the DP in the standard normal
space is |[V,G|;+|=12 and the normalized and reduced Hessian
matrix A at the DP in the transformed reference system is

S [~

21 61 193

A= (10)
80[19y3 23

The eigenvalues of matrix A are K]=v’5 and K2=\«“§/ 20, with
IBi;|=1 and |Bk,|=0.05, respectively. Figs. 2 and 3 show the
visualization using the MVPP method of the analytical LSS in the
first PP and second PP, respectively. The traces of the LSS in the
first and second PPs are obtained through the ZLCM using a grid
of points in the considered PPs extending from —0.8 to +0.8 in
the direction of the DP vector y* and from —1.0 to +1.0 in the
first and second principal directions. The LSF is evaluated at 41
grid points in each direction of the PPs, for a total of npz=412
—1=1,680 function evaluations. Then, the two traces are ob-
tained using the Matlab function “contour” (MathWorks 1997).
The trace of the LSS in the first PP differs considerably from the
straight line which corresponds to the FORM approximation. In
the second PP, the parameter |Bk,| is small compared to |Bk;| and
the trace of the LSS is very close to the straight line correspond-

08 ‘

\ —Lss
0.6) ---FORM

S 04 Failure Domain

k3] ‘

£ 02 DP

A
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&£ -02

(=]

2004
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[

~_06

= 05 0 05 1
First Principal Direction

Fig. 2. MVPP for time-invariant reliability analysis with analytical
LSF: visualization in the first PP (shaded area=difference between
actual failure domain and its FORM approximation)

ing to the FORM approximation. In general, for decreasing value
of |Bkj|, the trace of the LSS in the ith PP near the DP gets closer
to the straight line corresponding to the FORM approximation of
the LSS. This observation justifies the choice of the PPs in which
visualization of the LSS is of interest, based on the lower limit
|BK|min for parameter |Bik,|. Estimates of the failure probability,
P;, obtained by using several different computational reliability
methods are:  P;rorm=0.2398 (FORM), P;gormp=0.1654
(SORM based on Breitung’s formula, Breitung 1984),
P sorv,ur=0.1533 (SORM based on Hohenbichler-Rackwitz’s
formula, Hohenbichler and Rackwitz 1988), P;;5=0.1285 (impor-
tance sampling with a coefficient of variation COV[P5]=0.005,
taken as reference solution, obtained after 109,894 simulations).
As expected from the visualization of the LSS obtained using the
MVPP method, FORM provides only a poor approximation to the
failure probability, while SORM provides significantly improved
approximations of the failure probability. In this problem, the
difference between the actual LSS and its FORM approximation
in the first PP has a dominant effect, compared to the difference
observed in the second PP, on the discrepancy between the actual
failure probability and its FORM estimate. It is noteworthy that,
in general, a positive principal curvature results in an overestima-

0.8
—LSS
061 ---FORM
= i
2 04 Failure Domain
Q
o 0.2r
-
= A L A B
g
&£ -0.2t
= .
%‘3 _0.4 Safe Domain
a
-0.61
SNS origin
-0.8 : : :

0.5 0 05 1
Second Principal Direction
Fig. 3. MVPP for time-invariant reliability analysis with analytical

LSF: visualization in the second PP (shaded area=difference between
actual failure domain and its FORM approximation)
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Fig. 4. Geometry, cross-sectional properties, and applied horizontal
loads for the two-story RC frame model

tion by FORM of the probability content of the (convex) failure
domain in the corresponding PP (e.g., Figs. 2 and 3), while a
negative principal curvature yields an underestimation by FORM
of the probability content of the (concave) failure domain in the
corresponding PP.

Time-Invariant Case: Quasi-Static Pushover of an RC
Frame Structure

The second application example considers the two-story two-bay
reinforced concrete (RC) frame on rigid foundation represented in
Fig. 4. This frame structure is modeled using displacement-based
Euler-Bernoulli frame elements with distributed plasticity, each
with four Gauss-Legendre integration points along its length.
Each beam and column of the frame is discretized into three
frame elements for satisfactory accuracy of the computed re-
sponse. Section stress resultants at the integration points are com-
puted through fiber-section discretization. The constitutive
behavior of the reinforcement steel is represented via a uniaxial
Menegotto-Pinto constitutive model with linear kinematic hard-
ening (Menegotto and Pinto 1973). The concrete is modeled
based on the Popovics-Saenz model with zero tension stiffening
for the envelope curve (Kwon and Spacone 2002). The cyclic part
of the concrete model is modified from Zona et al. (2004) by
smoothing the unloading/reloading branches with third-order
polynomials in order to preserve the smoothness of the monotonic
envelope in the cyclic behavior. Different material parameters are
used for the confined (core) and unconfined (cover) concrete in
the columns, while the concrete in the beams is modeled as un-
confined. Typical stress-strain cyclic responses of the confined
and unconfined concrete materials used in this application ex-
ample are shown in Fig. 5.

Thirteen material constitutive parameters are used to charac-
terize the various structural materials present in the structure,
namely five parameters each for the confined concrete (f, core
=peak strength; &, ..=strain at peak strength; f, co.=residual
strength; €., .o =Strain at which the residual strength is reached;
E, .ore=initial tangent stiffness) and the unconfined (cover) con-
crete Uc,coverv € covers fcu,covcrs Ecu,covers and Ec,cover)’ and three pa-
rameters for the reinforcement steel (f,=yield strength; E,
=initial stiffness; and b=postyield to initial stiffness ratio). Each
material parameter is modeled with a single random variable over
the entire structure. The marginal PDFs of these material param-

—-5r|—Confined
||~ - -Unconfined

%0 15 10 5 0 5
Strain x10~

Fig. 5. Material constitutive model for confined and unconfined con-
crete of the two-story RC frame

eters are given in Table 1 and are consistent with studies reported
in the literature and based on real data (Mirza and MacGregor
1979; Mirza et al. 1979). The statistical correlation coefficients
between the various material parameters are chosen based on en-
gineering judgment as follows:

1. p=0.7:

a. fc,core _fcu,core;
b. Sc,core_ Scu,core;
C. sc,cover_ 8cu,cover;
d. fc,core _fc,cover;
c. € core ~ Ec,covers
f. €cu,core ~ Ecu,cover
g. Ec,core_Ec,cover’
h. fc,cover _fcu,cover;
i fcu,core _fcu,cover'
2. p=05:
a. fcu,core_fc,cover;
b. €¢,core ™ Ecu,covers
C. 8cu,core_ Sz:,cover;
d. fc,core _fcu,cover-

3. p=0.0 for all other pairs of material constitutive parameters.

After static application of the gravity loads (defined as uni-
formly distributed load per unit length of beam Q=42.5 kN/m at
each floor), the structure is subjected to a quasi-static monotonic
pushover analysis, in which an upper triangular distribution of

Table 1. Marginal PDFs, Mean, COV, and DP Values of Basic Random
Variables for the Two-Story RC Frame

COV
RV (unit) Distribution Mean (%) DP
fecore (MPa) Lognormal 34.47 20 31.82
Seucore (MPa) Lognormal 25.72 20 24.13
£c.core (—) Lognormal 0.005 20 0.0049
Eeucore (—) Lognormal 0.020 20 0.0195
E. core (MPa) Lognormal 27,850 20 24,160
fecover (MPa) Lognormal 27.58 20 25.10
feucover (MPa) Lognormal 1.00 20 0.93
£c.cover (—) Lognormal 0.002 20 0.0019
Ecucover (—) Lognormal 0.012 20 0.0167
E. cover (MPa) Lognormal 24,910 20 26,970
fy (MPa) Lognormal 248.20 10.6 232.5
E, (MPa) Lognormal 210,000 33 209,700
b (—) Lognormal 0.02 20 0.0195
P (kN) Lognormal 350 20 502.9
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Fig. 6. Base shear-horizontal floor displacements of two-story RC
frame structure with basic random variables equal to their mean val-
ues (mean point) and to their values at the DP

random horizontal forces is applied at the floor levels (see Fig. 4).
The horizontal force applied at the roof level, P, is modeled as a
lognormal random variable with mean pp=350 kN and COV
=20% (see Table 1), while the horizontal force applied at the
second floor level is defined as P/2 (i.e., fully correlated with the
force applied at the roof level). FE response, response sensitivity
and reliability analyses are performed using the FE analysis
framework OpenSees, in which the considered material constitu-
tive models were implemented and augmented for response sen-
sitivity analysis (Barbato and Conte 2006; Barbato 2007).

A roof displacement ;= iy, =0.144 m (corresponding to a
roof drift ratio of 2.0% and computed from the horizontal dis-
placement of the top of the middle column) is considered as fail-
ure condition. Thus, the LSF is defined as g=0.144 m—u,,. The
DP search is performed by using the constrained nonlinear opti-
mization software SNOPT and taking the origin of the standard
normal space as starting point. Fig. 6 shows the base shear-
horizontal floor displacement responses (recorded at the top of the
middle column of each story) of the frame structure subjected to
quasi-static pushover loads and with random variables set at their
mean values and at their DP values (Table 1), respectively. The
first-order reliability index obtained is PBrorm=2.048 and the
FORM estimate of the failure probability is P;porm=0.0203.
After computing all 13 principal curvatures of the LSS at the DP
(the first eight of which are reported in Table 2, together with the
corresponding |Bk,| values), the SORM approximations using

Table 2. Principal Curvatures of the LSSs at the DP Used in the MVPP
Method for the Application Examples of Time-Invariant and Time-
Variant Reliability Analysis

Time-variant
problem (=5 s) (3=3.409)

Time-invariant
problem (3=2.048)

Principal

directions  Curvature k;  |Bkj] Curvature K, |Bk;|

1 —0.0223 0.0457 5.2874 18.0258
2 —0.0138 0.0284 1.1437 3.8990
3 0.0079 0.0161 0.3238 1.1038
4 —0.0054 0.0110 0.0690 0.2351
5 0.0031 0.0063 —0.0121 0.0414
6 —0.0018 0.0037 —0.0107 0.0366
7 0.0015 0.0030 —0.0031 0.0104
8 —0.0014 0.0029 —0.0025 0.0085

0.3
o 02 Non-convergence domain
.S
§:3 0.1 f—/
@) DP
k= 0 O
3
o
gn -0.1¢ —LSS trace
z ---FORM
A -0.2r ---SORM
-04 -0.2 0 0.2 0.4

First Principal Direction

Fig. 7. MVPP for time-invariant reliability analysis of a RC frame
structure subjected to quasi-static pushover loads: visualization in the
first PP

Breitung’s and Hohenbichler-Rackwitz’s formula are obtained as
Prsormp=0.0209 and P;gormur=0.0211, respectively. Monte
Carlo simulation (MCS) yields the estimate P;ycs=0.0221 (from
150,000 samples for COV[P;ycs]=0.017), which is used as ref-
erence solution. It is observed that both FORM and SORM analy-
ses provide sufficiently accurate estimates of the failure
probability for this application example. The SORM approxima-
tion based on Hohenbichler-Rackwitz’s formula is the most accu-
rate of the asymptotic approximations considered here and
requires the same computational effort as the SORM approxima-
tion based on Breitung’s formula. MCS is computationally very
expensive (about 2,000 times more expensive than SORM).

The MVPP method is then applied to this example using the
results of the reliability analyses performed. In particular, the DP,
the principal directions and curvatures are already available (the
DP is necessary for FORM and SORM, while the principal direc-
tions and curvatures are required by SORM). The values of |Bx;|
are all very small (see Table 2), and therefore only small differ-
ences are expected between the traces of the actual LSS and its
first-order approximation. Fig. 7 shows the trace of the actual LSS
in the first PP together with the traces of the FORM and SORM
approximations of the LSS at the DP. The same figure also indi-
cates the domain in which the FE analyses do not converge (in
short: nonconvergence domain). The trace of the LSS in the first
PP is obtained through the ZLCM using a grid of points in the
considered PP extending from —0.3 to +0.3 in the direction of the
DP vector y* and from —0.4 to +0.4 in the first principal direc-
tion. The LSF is evaluated at 41 grid points in each direction of
the PP, for a total of npz=412-1=1,680 FE analyses. At the grid
point corresponding to the DP, no additional FE analysis is re-
quired since LSF=0. Determination via the ZLCM of the trace of
the LSS in each of the PPs considered is computationally very
expensive, but the computed traces can be used as reference so-
lutions for testing more efficient trace finding methods such as the
ZFM defined above. The traces of the actual LSS and its first- and
second-order approximations at the DP are very close in the first
PP. Fig. 8 provides a zoom view of Fig. 7, with the vertical axis
magnified by a factor of 200, in which the small differences be-
tween the traces of the actual LSS and its first/second-order ap-
proximations can be better appreciated. The SORM
approximation of the LSS is obtained as the paraboloid tangent to
the LSS at the DP with principal curvatures k; (i=1,...,13). Fig.
8 also shows the trace of the LSS obtained through the ZFM by
using only 58 FE analyses (performed during the line search
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Fig. 8. MVPP for time-invariant reliability analysis of a RC frame
structure subjected to quasi-static pushover loads: visualization in the
first PP (zoom view)

along the DP direction for each of 10 discrete values of the ab-
scissa along the principal direction). The trace obtained by means
of the ZFM is very close to that computed using the ZLCM. In
this example, the nonconvergence domain significantly overlaps
with the failure domain as seen in Fig. 7. Nonconvergence do-
mains are common in FE reliability analysis based on nonlinear
hysteretic structural models with degrading behavior, such as the
RC frame model considered here. The existence of a nonconver-
gence domain requires appropriate handling of the non-converged
sample points to obtain a reliable failure probability estimate
using simulation methods. In this paper, the MCS result is ob-
tained by repeating the FE analysis for all samples of the random
model parameters corresponding to non-convergence cases. These
new FE analyses are performed by using smaller load increments
and a displacement-control solution strategy in order to compute
the LSF values. This procedure is feasible for the problem con-
sidered here due to its relatively small size. For more complex
large-scale real-world applications, a more general and efficient
approach is needed, the development of which is outside the
scope of this paper. The visualization of the LSS using the MVPP
method explains the good agreement between the FORM, SORM
and MCS results obtained for this problem. The negative first and
second eigenvalues of the Hessian matrix of the LSF at the DP (or
principal curvatures of the LSS at the DP) suggest that, in this
example, FORM underestimates the failure probability, which is
confirmed by the MCS result.

Time-Variant Case: Nonlinear Hysteretic SDOF System
Subjected to White Noise Excitation

In a third application example, the MVPP method is applied to the
time-variant reliability analysis of a nonlinear hysteretic single-
degree-of-freedom (SDOF) system subjected to Gaussian white
noise base excitation. The base excitation process is discretized
into Gaussian random variables representing the value of the
ground acceleration at discrete times with a constant time interval
Ar=0.01 s. The ground acceleration process is then linearly in-
terpolated inside each of the time intervals. The SDOF system is
characterized by a force-deformation relation modeled using the
Menegotto-Pinto constitutive law. This constitutive law is cali-
brated to a shear-type single-story steel frame with height H
=3.20 m, bay length L=6.00 m and made of European HE340A
wide flange steel beams. The system is defined by the following
parameters (taken as deterministic): mass M=28,800 kg, damp-

DP excitation
[m/sz]

[0 0
0.04r8 0
0.02lE -0.05 0 0.05

Displacement [m]

—0.0% 1 2 3 4 5
Time [s]

DP response
[m]

Fig. 9. Design point at time 7=5.0 s for time-variant reliability
analysis of a nonlinear hysteretic SDOF system subjected to white
noise base excitation: DP excitation (top), DP roof displacement time
history (bottom), and DP base shear-roof displacement response
(inset)

ing ratio {=0.02, initial stiffness K=40.56 kN/mm, initial yield
force Fy,y=734 kN, and post-yield to initial stiffness ratio b
=0.05.

Fig. 9 plots the DP excitation (top), the DP roof displacement
time history (bottom), and the DP base shear-roof displacement
response (inset) for a failure event occurring at time 7=5.0 s,
with failure defined as the roof displacement exceeding the
threshold £=0.048 m (single-barrier up-crossing problem, Lutes
and Sarkani 2004), corresponding to a roof drift ratio of 1.5%.
Both DP excitation and DP roof displacement time histories are
characterized by low values for most of their duration and very
high values at their ends. These time history profiles at the DP are
significantly different from their counterparts for the linear elastic
case, in which the DP excitation and the DP roof displacement
values increase gradually with time (Drenick 1970). The SDOF
system behaves almost linearly for r<<4.9 s, and strongly nonlin-
early for t=4.9 s. This DP behavior is typical of the first-yield
excursion condition of structural systems modeled using the
Menegotto-Pinto constitutive model and subjected to white noise
excitation (Conte et al. 2008).

Table 2 reports the first eight principal curvatures and the cor-
responding |Bk,| values for the LSS corresponding to a failure
event occurring at time =5.0 s. It is observed that: (1) the first
three principal curvatures are relatively very large in magnitude
compared to the remaining ones; (2) the magnitude of the princi-
pal curvatures (sorted from highest to lowest absolute value) de-
creases very fast with their order; and (3) even if the number of
random variables (i.e., the random values of the ground accelera-
tion at all discrete times) is quite large (n=500) in this problem,
only a few PPs are needed to visualize the nonlinear behavior of
the LSS in the neighborhood of the DP. In this specific case,
setting |Bk|yin=0.5, the MVPP method requires to visualize the
LSS using FE analysis in only three PPs. Figs. 10-12 show the
MVPP-based visualization, in the first three PPs, of the two LSSs
(G,=0 and G,=0) employed in the computation of the MOCR at
time t=5.0 s using 8:=0.005 s in Eq. (6). Also in this case, the
ZFM (requiring 285 simulations over the first three PPs com-
bined) is much more efficient than the ZLCM (requiring 1,323
simulations), while the two methods provide practically coinci-
dent results. From these three figures, it is observed that: (1) the
difference between the traces of the actual LSSs at times 5.0 s
(G,=0) and 5.005 s (G,=0) and the traces of their FORM ap-
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Fig. 10. MVPP for time-variant reliability analysis of a nonlinear
hysteretic SDOF system subjected to white noise base excitation (r
=5 s, 8r=0.005 s): visualization in the first PP

proximations is very significant; and (2) the failure domain ob-
tained using the FORM approximations of the LSSs differs
significantly from the actual failure domain needed in the numera-
tor on the r.h.s. of Eq. (6) for MOCR computation.

Fig. 13 compares the expected cumulative number of up-
crossing events, E[N(z)], and the time-variant failure probability,
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Fig. 11. MVPP for time-variant reliability analysis of a nonlinear
hysteretic SDOF system subjected to white noise base excitation (r
=5 s, 5t=0.005 s): visualization in the second PP
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Fig. 12. MVPP for time-variant reliability analysis of a nonlinear
hysteretic SDOF system subjected to white noise base excitation (¢
=5 s, 8r=0.005 s): visualization in the third PP
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Fig. 13. Time-variant reliability analysis of a nonlinear hysteretic
SDOF system subjected to white noise base excitation: estimates of
expected cumulative number of up-crossings, E[N], and time-variant
failure probability, Py, using MCS and FORM-based MOCR compu-
tation

P(1), estimated using MCS and FORM-based MOCR computa-
tion for 0 s=¢=35 s. It is observed that the Poisson approxima-
tion of the failure probability, P, p(r) (Lutes and Sarkani 2004),
based on FORM-based MOCR computation (in short, FORM-
based Poisson approximation) provides remarkably inaccurate re-
sults compared to MCS. The FORM-based Poisson
approximation suffers from two sources of error: (1) inaccuracy
of the hypothesis of statistical independence of up-crossing
events, which is the basis of the Poisson approximation; and (2)
inaccuracy of the FORM approximations at the DP of the two
nonlinear LSSs used to compute the MOCR at a given instant of
time. For this application example, the results shown in Fig. 13
indicate that the inaccuracy of the FORM-based Poisson approxi-
mation is due principally to the inaccuracy of the FORM approxi-
mations due to a pronounced nonlinearity of the LSSs at their
DPs. The MVPP results presented in Figs. 10-12 confirm this
expected strong nonlinearity of the LSSs at their DPs in the first
three PPs.

Conclusions

In the context of FE reliability analysis, this paper introduces a
new method, referred to as the MVPP method, to visualize LSSs
near their design points DPs in high-dimensional spaces. This
method consists of visualizing the traces of the LSS in the neigh-
borhood of a DP in planes of particular interest, referred to as
PPs. The PPs are defined as the planes of principal curvatures of
the LSS at the DP, in decreasing order of magnitude of the prin-
cipal curvatures.

The MVPP method provides very useful information about the
topology of the LSS, identifying a small number of PPs in which
the traces of the LSS are significantly nonlinear, and thus requir-
ing only a limited number of FE analyses (i.e., proportional to the
number of identified PPs). For the application examples of time-
invariant and time-variant reliability analysis presented in this
paper, the visualization results obtained using the MVPP method
are used to investigate the sources of error of the failure probabil-
ity estimates provided by FORM/SORM as compared to the
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“exact” failure probability determined through Monte Carlo simu-
lation and importance sampling.

The newly gained insight into the topology of the LSS at the
DP is being used by the writers to develop more efficient and
more accurate computational reliability methods for evaluating
the probability content of failure domains typically encountered
in FE reliability analysis.
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